

# SAF

A New Pretreatment Technology Case Study: Suspended Air® Flotation





### \*A New Pretreatment Technology Case Study: Suspended Air® Flotation

Simmons Foods in Siloam Springs, Arkansas





- \*SAF® = Suspended Air® Floatation
- \*Uses froth made from an anionic surfactant, water, and air instead of air bubbles for flotation.
- One gallon of froth = 0.8 ml soap =
  - 0.6 gal water and 0.4 gal (0.05ft<sup>3</sup>) air.
- <sup>\*</sup>Bubbles have an anionic charge so are attracted to the floc.
- Increases flotation rate so units can float 20-40 lbs (spec'ed at 30lbs) of solids per square foot per hour (lbs/hr/ft<sup>2</sup>).
- \*Decreases the size of the unit vs. DAF; no lamella style plates
- \*Less Maintenance
- \*More Highly Dewatered Skimmed Solids
- \*Better Results Water Clarity





\* Installed two new units in <u>Siloam Springs</u>
\* One primary
\* One Secondary
\* Installed one new unit in <u>Van Buren</u>
\* Primary treatment.
\* Converted two existing DAF units to SAFs in <u>Southwest City</u>.
\* One primary
\* One Secondary

## \*Simmons has gone SAF®







## \*New SAF® Units for Siloam Springs.





ClearFloater Model CF250 \* 35ft<sup>2</sup> Float Cell - rated for 700 gpm @ 3000Mg/L TSS \* 350 gpm - current actual flow \* From Secondary SAF. \* Influent flow contained 3000 mg/L MLSS.

## \*Siloam Springs SAF® Effluent







## \*Froth Generator

Model F-200 Froth Generator Shown







## \*Froth Flow Meter and Froth.





\* Tote of Anionic Surfactant.
\* Froth Generator.

\* Surfactant metering pump.
\* Water line.
\* Froth pump.
\* Holding tank.
\* Flow meter.
\* Flow control valve.

\* Floc Mixer - Active Mixing Chamber.

## \*Froth Generation Summary.





Floc Mixer - replaces previous connection from floc tube to DAF inlet flange

\* DAF to SAF Conversion: Froth Generator & Floc Mixer





\* Secondary DAF
\* 216 ft2 of surface area.
\* At 1.8 MGD before SAF conversion it could handle 1500 mg/L influent suspended solids.

It now handles 3500 mg/L with no carry over Average effluent TSS = 15 mg/L.

Specified Maximum Flow @ Current Loading ~3500 gpm \*Secondary SAF®





## \*Secondary SAF® Effluent.



| Secondary DAF                                            | <u>SAF® Retrofit</u>                                                         |
|----------------------------------------------------------|------------------------------------------------------------------------------|
| * 60 HP Recirculation Pump<br>\$31,367/yr @ \$0.08/KWHR  | Equivalent - 10HP; \$5,230/yr @<br>\$0.08/KWHR                               |
| N/A                                                      | Frothing Agent Consumption @ 25<br>GPM Output; (1)-tote/6wks;<br>\$38,780/yr |
| Coagulant Consumption:<br>\$350,000/yr                   | Coagulant Consumption: \$140,000                                             |
| Cationic Polymer Consumption:<br>120Lbs/Day; \$87,600/yr | Cationic Polymer Consumption:<br>60Lbs/Day; \$43,800/yr                      |
| Total O&M Costs/yr: \$468,967                            | Total O&M Costs/yr: \$227,810                                                |
|                                                          | Net Savings/yr: \$241,157                                                    |

\*Difficult to quantify savings associated with directly reclaiming water vs requiring additional treatment

\* Secondary DAF to SAF® Cost Comparison





\*Converted Primary DAF.

\*It was maxed out at 1250 gpm and 2000 - 2500 mg/L influent solids.

\*It now treats an additional 700 gpm.

- Specified to treat a maximum 2400 gpm.
- \*Cost effective way to increase capacity.

\* Primary DAF to SAF® Conversion.



| <u>Primary DAF</u>             | <u>SAF® Retrofit</u>                                                         |
|--------------------------------|------------------------------------------------------------------------------|
| 40 HP Recirculation Pump       | Equivalent - 10HP; \$5,230/yr @                                              |
| \$20,920/yr @ \$0.08/KWHR      | \$0.08/KWHR                                                                  |
| N/A                            | Frothing Agent Consumption @<br>25 GPM Output; (1)-tote/6wks;<br>\$38,780/yr |
| Organic Coagulant Consumption: | Organic Coagulant Consumption:                                               |
| 700Lbs/Day; \$130,000/yr       | 350Lbs/Day; \$65,000/yr                                                      |
| Cationic Polymer Consumption:  | Cationic Polymer Consumption:                                                |
| 120Lbs/Day; \$87,600/yr        | 120Lbs/Day; \$87,600/yr                                                      |
| Anionic Polymer Consumption:   | Anionic Polymer Consumption:                                                 |
| 110Lbs/Day; \$50,000/yr        | 0-Lbs/Day; \$0.00/yr                                                         |
| Total O&M Costs/yr: \$288,540  | Total O&M Costs/yr: \$196,610                                                |
|                                | Net Savings/yr: \$91,930                                                     |

\*Primary DAF to SAF® Cost Comparison



#### SAF is mechanically simpler than a DAF:

- Removes recirculation pump, header, compressor, and air lines. (No more air lines plugging in header which would also cause packing to blow out on recirc pump.)
- \*No requirement for lamella style plates
- \* Less maintenance

\*It's operator friendly.

- \* It's 6 times more efficient than a DAF (20-40 lbs/hr/ft<sup>2</sup> vs. 5 lbs/hr/ft<sup>2</sup>).
- \* You can adjust the froth flow (i.e. floatation air) to the loading.
- \* Feed less chemical (less polymer mixing).
- Better results
- \* Thicker Solids

